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FAST REACTOR SHAPE FACTORS AND
SHAPE-DEPENDENT VARIABLES

by

W. B. Loewenstein and G. W. Main

ABSTRACT

Existing experimental data on the variation of reactivity with core geom-
etry are reviewed. Four typical fast neutron systems are analyzed to predict:

1. the variation of critical mass with cylindrical core geometry (core
and reflector composition are held fixed);

2. the reactivity worth of fuel at the radial core boundary as a function
of cylindrical core geometry;

3. the geometric variation of heat removal parameters; these include
the ratio of:

a. Maximum power density to average power density in the core.

b. Maximum power density to average radial power density in the
core.

c. Total reflector power to total core power.

The absolute values of all of these parameters are determined bythe core
and reflector compositions of the four systems. These were chosen to simulate
typical constituents of interest to reactor analysis.

Two systems represent a typical fast reactor and a typical fast critical
experiment. The other two systems represent compositional combinations of the
two basic systems.

The results of the analyses show that the significant geometric variation
is in items 2 and 3b. Item 1 is almost constant for small variations near the op-
timum geometric configuration. Outside of this range, the variation of critical
mass with core geometry is pronounced.

A most significant result shows that the ratio of the spherical critical
mass to the minimum cylindrical critical mass, for fixed core and reflector
composition, depends primarily on core composition. The composition of the
thick reflector has a lesser effect on this ratio which was found to increase with
core density.

The two-dimensional calculations are interpreted and analyzed on the
basis of one-dimensional concepts. Reflector savings are calculated for spher-
ical and cylindrical systems. The more exact reflector savings determinations
are compared with more approximate calculations. It is found that the approxi-
mate determinations are qualitatively correct and show correct trends. However,
the more detailed and accurate analytical techniques are required for precision
comparison between theory and experiment.

An interesting correlation between critical mass and core surface area
is demonstrated. It was found that, in the range of interest, the critical mass
depends almost linearly upon the surface area. The same linear dependence ap-
proximates all the systems studied.



I. INTRODUCTION

A large fraction of the reported fast neutron critical experiments
were investigated in cylindrical geometry. 1,2) Analytical efforts to in-
terpret the experimental data and test microscopic multigroup constants
utilize reflected spherical geometry.(3»4»5) It has been demonstrated(l'7)
that spherical calculations do give the spectral properties of the cylindrical
critical assemblies. However, there must be a basis for converting the pre-
dicted spherical critical mass to cylindrical geometry for comparison with
the experimental data. This is generally accomplished by the use of a suit-
able Shape Factor.

The Shape Factor (S.F.)* is defined as the ratio of the spherical
critical mass of a system to the critical mass of a given assembly.**
Both systems have identical core compositions and similar reflector

parameters.

Survey analyses of a series of critical experiments often resort to
the reported experimental Shape Factors (see Fig. 6-2 of Ref. 8). These
limited data suggest that for the fairly well reflected and moderately sized
systems, the optimum geometryt Shape Factor is relatively independent of
core size or composition.

The analysis of fast neutron critical experiments performed at
ZPR-I1Thas shown that fair predictions may be made for systems having
high-density uranium cores.(4)Good predictions are not made for those sys-
tems with low-density cores (due to the presence of coolant and structural
materials). 4,5) Predictions for the low-density system can be improved
by more sophisticated averaging of cross sections over scattering reso-
nances.(9) However, such averaging does not bring agreement between

theory and experiment with the precision found for the high-density system.(S)

The apparent lack of agreement between theory and experiment for
the low-density systems suggests that the shape conversion, from spherical
to cylindrical geometry, may be dependent on the core and reflector densities
as well as the core size and configuration. The question is: How significant
is the variation of the optimum geometry Shape Factor? A reliable analytical
technique must be used to unambiguously answer this question.

* The Shape Factor is sometimes specified to be the inverse of this
definition.

** The assembly core usually has simple cylindrical or rectangular
geometry but may conceivably have very irregular geometry.

f Minimum Cylindrical Critical Mass.



Initial efforts were devoted to predicting the existing experimental
data on 50-liter optimum geometry cores.(1) These showed that both one-
and two-dimensional diffusion theory could, to a fairly high degree of pre-
cision, predict the criticality of the known systems (see Tables 18 and 22
of Ref. 1). The two-dimensional calculations were straightforward. The
one-dimensional analyses assumed that the neutron flux ¢ is approximately
separable:

¢(r.z) = R(r)Z(z)
With this assumption, one-dimensional calculations (axially bare,

radially reflected cylinders and radially bare, axially reflected slabs) were
performed to yield the following relationships:

Beb= O Bt o (1)
20
by = a,C+ B, ; (@)

where bi is the radial buckling, b2 is the axial buckling and C is the enrich-
ment (U235 in U) of the fuel. The quantities Op, By ,0,, and B, are constants.
Fundamental mode calculations with various core enrichments yield the
material buckling k% of the core:

k%= aC +p : (3)
Equations (1), (2), and (3) along with the constraint
2 2 2o
b2 +b2 - 2 =0 (4)

allow for the solution of the critical enrichment which satisfies the self-
consistent set of calculations. Then b% and b; for the critical enrichment
specify the appropriate axial and radial reflector saving.

The one-dimensional method of solution showed that both axial and
radial reflector saving are a function of the ratio of core height to diameter
(see Table 6-14 of Ref. 8).

A series of detailed calculations were performed to compare the
approximate one-dimensional method with the more accurate two-dimensional
method. The results showed (see Table 18 of Ref. 3) that

kip - k;

-0.01 < < 003

kp

for uniformly reflected systems. Here kjp and kpp are the calculated multi-
plication constants for one- and two-dimensional analyses, respectively.



The expected variation in the shape conversion factors is expected
to represent about 1% Ak/k. Therefore, a precise analysis to resolve this

question requires two-dimensional methods.

The Shape Factor is useful for fast reactor design. Conceptual
studies, usually performed in idealized spherical geometry, tend to mini-

mize the required fuel inventory.

The fuel inventory doubling time in a fast power breeder reactor is
directly proportional to the critical mass and inversely proportional to the
total power. The critical mass is a function of the Shape Factor. The total
power may be a function of the Shape Factor. For instance, the maximum
power density may be increased as the core dimensions parallel to coolant
channels are reduced. The Shape Factor may be used to determine fuel
doubling time for an actual reactor from that predicted by the general con-

ceptual studies.

II. EXPERIMENTAL DATA

A variety of Shape Factor investigations have been reported, most
for cylindrical geometry. They may be of limited use for general fast re-
actor design. It is not obvious that they are always applicable.

The experimental data include those for:

1. High-density, 6-phase plutonium cores(10) reflected by either
natural uranium or beryllium. Reflector thicknesses were 2.0 and 5.0 cm.
The data are shown in Fig. 1.

2. High-density, highly enriched (~93%) uranium cores reflected
by natural uranium,(11) water,(12) and graphite.(12) Natural uranium thick-
nesses were 2.84, 5.08 and 20.3 cm. The graphite thickness was > 40 cm.
The water reflector was essentially infinite. Unreflected systems were also
included. These data are shown in Fig. 2.

3. EBR-II(13,14) size and composition cores reflected by high-
density depleted uranium. The reflector thickness was ~30 cm. The core
contained about 30 v/o uranium (~46% enriched), 31 v/o aluminum, and
12 v/o stainless steel.(1) Figure 3 includes these data.

‘ 4. Several cores containing 49 v/o uranium (~23% enriched), 21 v/o
alum1num and 15 v/o stainless steel. The reflector is ~30 cm of the high
density depleted uranium.(l) These data are also shown on i3,
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Other experiments have yielded the change in critical mass with
core geometry. In most of these the data are insufficient for constructing
curves like those in Figs. 1, 2, and 3. Their use here is limited in the
sense that they must either be corrected or normalized to some of the data
cited here. Even with such corrections or normalizations these data would
not appreciably extend the scope of the experimental information.

These results (see Figs. 1, 2, and 3) yield several common conclu-
sions. The optimum ratio of core height to diameter (L/D) is less than one.
Further, the critical mass of the system, with fixed composition, is rela-
tively constant for 0.7 < L/D < 1.1; the critical mass increases quite rapidly
outside of this range.

These data are insufficient for general fast reactor design because:

1. The reflectors have neither the composition nor the dimensions
of those in a typical fast reactor.

2. The experimental cores are quite small in relation to the cur-
rently conceived fast power reactors.(15) The experimental data for the
EBR-II size represent the largest cores (~50 liters in optimum geometry)
reported to date. Current conceptual studies deal primarily with core
volumes greater than 400 liters.
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III. PREDICTED SHAPE FACTORS FOR FOUR
FAST NEUTRON SYSTEMS

Four reactor systems have been extensively analyzed for typical
Shape Factor data. These represent systems that may be encountered in
reactor design as well as in an analysis of critical experiments. The sys-
tems are combinations of high- and low-density cores and reflectors.
Table I summarizes the compositions of the four systems.

Table I

CORE AND REFLECTOR COMPOSITIONS OF THE FOUR REACTOR SYSTEMS

Volume Fractions* Approx.
N A ras Density Spherical
Niber Core Reflector Core
Core | Reflector Volume
Ues e Fe Na 19] Fe Na (liters)
1 High High 0.0712 | 0.7405 | 0.0928 0 0.835 | 0.0731 0 560
2 Low Low 0.0447 | 0.2553 | 0.20 0.50 0.60 0.20 0.20 850
3 Low High 0.0581 | 0.0914 | 0.245 0.376 | 0.835 | 0.0731 0 380
4 High Low 0.0712 | 0.7405 | 0.0928 0 0.60 0.20 0.20 550

* Volume Fraction x 100 = Volume %; the total volume fraction is not unity because
voids exist.

Reference atomic densities (N) are:

N x 10-#
Material (atoms/cm?)
UE2 0.048
y=s 0.048
U 0.048
Fe 0.085
Na 0.022

Reactor No. 1 is similar to ZPR-III Assembly 25.(2) Results from
this analysis probably will apply to ZPR-III Assemblies 22 and 24,(2) as
well as to the 16.25% enriched Jemima.(6) Reactor No. 2 represents a
typical fast power breeder reactor system. Reactor No. 3, with a low-
density core and a high-density reflector, is typical of many systems in-
vestigated at ZPR-III (Assemblies 15, 29, 30, 3]).(112) Reactor No. 4 has
no experimental analogue.

The Shape Factor analyses utilized three-energy-group diffusion
theory. The group constants are given in Table II. PDQ(16) analyses were
used to obtain results in cylindrical geometry; calculations for spherical
geometry were performed with RE-122.(17)
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Table II

THREE-GROUP FAST CROSS SECTIONS

j—j +1
i* v vof Otr Oa g
1 2.65 3.44 4.93 1.4 1.4
e e 3.50 6.0 167 -
5 2:5 15.00 19.0 9.0 -
1 248 1.48 4.93 0.57 2isdl
U8 2 - - 7.0 0.18 =
3 - - 20.0 0.80 =
1 - - 2.2 0.0025 0.74
Fe 2 - - 2.9 0.0057 0.0025
3 - - 755 0.015 -
1 - - 200 0.0002 0.4
Na 2 - - 3:5 0.0010 0.1
3 - - 10.0 0.0015 -
*¥j=1:1.35 Mev =E <@
j=2:9.1 kev =E =1.35 Mev
i =31 key =E =.9.1 key
The analytical procedure was the following:
1. With fixed composition core and reflector, the spherical core
radius was varied until criticality was attained.
2. The experimental Shape Factor curves (see Fig. 3) were then

used to specify the core dimension for the initial calculations in cylindrical
geometry.

3. The results from step 2 were then used to specify a critical core
configuration.

4. If the result of step 3 was not critical, the final results were
interpolated to give a critical value for L/D.

5. In two cases (Reactors 1 and 2), the predicted curve was used
to specify the height and diameter of a critical core. The resulting reactors
were analyzed with PDQ and found to be critical within 0.1% Ak/k.

Table IIl is a summary of the individual calculations. Table IV and
Figs. 4 and 5 show the final results of these analyses. It may be seen that
the optimum geometry Shape Factor is a function of the reactor system used.
It is clearly not an invariant quantity. Furthermore, the variation of critical
mass with core geometry also is a function of the specific reactor system.



Table ITT

SUMMARY OF SPECIFIC REACTOR CALCULATIONS

Extrapolated

First Calculation

Second Calculation

Perturbation of

Reactor : Core Boundar)
S Il B Hgi(:;r:t‘ biameter | upee | Caculated | (8 S g | Calculatd T wi
(liters) | (cm) (cm) Keff (liters) (cm) Keff A @
1 0.30 528 41.7 118.8 0.40 0.966 676 1344 0.36 0.980 0.219 | 0.065
0.49 455 59.2 98.9 0.60 0.973 560 109.8 0.54 0.988 0.188 | 0.081
0.68 432 703 88.5 0.80 0.975 533 983 0.72 0.992 0.189 | 0.090
0.78 433 76.2 85.1 0.89 0.976 570 97.9 0.78 0.999 0.240 | 0.100
0.97 436 87.6 79.6 1.10 0.974 532 87.9 1.00 0.994 0.180 | 0.111
1.32 466 110.2 3.4 1.50 0.972 576 8L.6 1.35 0.995 0.191 | 0.120
1§97 561 153.5 68.2 275 0.970 694 75.9 2.02 0.995 0.192 | 0.130
0.90°% 560 83.6 92.8 0.90 0.999 = = = = ! =
sphere 560 = 102.2 - 1.0009 - - 2 i " S
2 0.27 1374 54.0 180.0 0.30 0.985 1868 210.0 0.20 1.004 0.264 | 0.072
0.36 1039 59.6 149.0 0.40 0.979 1206 160.5 0.37 0.992 0.139 | 0.094
0.57 896 74.4 1239 0.60 0.987 1042 133.6 0.56 1.004 0.140 | 0.121
0.76 850 87.9 111.0 0.79 0.988 983 119.3 0.74 1.007 0.135 | 0.140
0.87 853 95.7 106.6 0.90 0.990 917 110.5 0.87 1.000 0.070 | 0.143
0.96 850 102.7 102.7 1.00 0.989 985 110.5 0.93 1.010 0.137 | 0.152
1.44 919 138.0 92.1 1.50 0.986 1062 99.0 1.39 1.010 0.135 | 0.176
2.16 1110 192.6 85.7 ) 0.985 1276 91.8 2.10 1.009 0.130 | 0.183
0ig2r == 918 99.6 108.3 0.92 1.0008 = = = < = =
sphere 850 = 117.5 e 1.0002 = = = = = 2
3 0.32 650 421 140.2 0.30 1.008 690 144.4 0.29 1.014 0.058 | 0.104
0.45 473 49.6 110.3 0.45 0.998 490 122 0.44 1.003 0.035 | 0.143
0.59 414 51.5 95.8 0.60 0.993 429 97.4 0.59 0.999 0.035 | 0.171
0.78 384 67.9 84.9 0.80 0.989 398 86.4 0.79 0.996 0.035 | 0.200
L17 396 89.9 749 1.20 0.990 412 76.4 1.18 0.999 0.039 | 0.231
1.48 423 106.6 71.1 1.50 0.992 441 72.6 147 1.002 0.041 | 0.243
sphere 377 = 89.6 = 1.000 & = = i 5 £
4 0.50 455 59.2 98.9 0.60 0.974 560 109.8 0.54 0.989 0.188 | 0.080
0.68 432 70.3 88.4 0.80 0.975 533 98.3 0.72 0.993 0.189 | 0.095
0.78 433 76.2 84.6 0.90 0.976 570 97.6 0.78 1.000 0.240 | 0.100
0.96 435 87.6 79.6 1.10 0.975 531 871.9 1.00 0.994 0.181 | 0.105
1137 466 110.2 73.4 1.50 0.973 576 81.6 1.35 0.996 0.191 | 0.120
sphere 544 = 1013 = 1.000 = = - % » ¥

*Core height (L) is the same for "First" and "'Second" Calculation.

**L/D = core height/core diameter

***Cylindrical core size predicted from spherical calculation and curves on Figs. 4 and 5.
TAVIV = (Vy - V]IVp

t1 q= (AKK/(AM/M) =< k2

k2~ ky

Mz - My
Mz

s

)

13
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SHAPE FACTOR

Table IV

SUMMARY OF SHAPE FACTOR ANALYSES*

Re;:“ L/D | V (liters)** szjf:r Re;?“ L/D | V (liters)** }?Z:f:r
0.30 946 0.591 0.32 586 0.643
0.49 678 0.826 0.45 480 0.785
0.68 590 0.948 . 0.59 431 0.875
1 0.78 571 0.980 0.78 406 0.928
0.97 566 0.988 117 414 0.911
132 602 0.930 1.48 437 0.863
1.97 732 0.765
0.27 1696 0.501 0.50 662 0.821
0.36 1283 0.661 0.68 581 0.936
0.57 993 0.855 4 0.78 570 0.954
2 0.76 923 0.920 0.96 569 0.956
0.87 909 0.934 1.32 599 0.908
0.96 923 0.920
1.44 995 0.853
2.16 1203 0.705

*Data based on calculations in Table III.

**Core Volume.
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IV. PERTURBATIONS AT RADIAL CORE BOUNDARY AS
A FUNCTION OF CORE GEOMETRY

The last column of Table III gives a parameter related to the pre-
dicted worth of fuel (core material) at the core boundary. The coefficient
relating fractional change in critical mass with reactivity is given by the

equation

Ak AM
e
where k is the effective multiplication constant and M the critical mass,
and is a fairly sensitive function of L/D. It is to be noted that the relation-
ship between reactivity Ak/k and the fraction of fuel substituted at the core
boundary, AM/M, is, in general, nonlinear. Therefore, the calculated "q"
values in Table III are peculiar to the indicated increments of substitution,

AV/V.

The calculations showed that, over a large range, q ~ In (L/D). This
result was experimentally confirmed(18) in the ZPR-III Shape Factor experi-
ments.{l) Furthermore, the measurements of q with ZPR-III Assemblies-22
and 36(2,18) confirmed the conclusion that q is a sensitive function of L/D.
The critical masses of these two assemblies differed by less than 2 kg U235,
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The spectral properties differed only slightly. The reflectors were identical.
The Assembly 22 core composition was 9.4 v/o U?%, 70 v/o U8, and 9.2 v/o
steel, the remainder constituting voids. The Assembly 36 core composition
was 9.4 V/O =, GO v/o g e v/o Na, and 13 v/o steel. The value of L/D
for Assembly 22 core was ~0.87 and 0.13 =g = 0.16; for the Assembly 36
core, the value of L/D was ~1.4 and 0.2]1 =q = 0‘23.(18) These results
cannot be directly related to those predicted for Reactor No. 1 (Table III).
The core and reflector compositions of Reactor No. 1 were very similar to
that of Assembly 22. However, the U?5 enrichment of Assembly 22 was
about 12%, whereas in Reactor No. 1 it was less than 9%. The basic core
volume of Reactor No. 1 was about four times as large as that for Assem-
bly 22. Therefore, the measured ratio of the q values,

1.3 <[q (L/D) = 1.4]/[q (L/D) = 0.87] < 1.75
compares favorably with that interpolated from Table III (Reactor No. 1):
[6{n/D) = 1.4]/q(l/D}) = 0.87] =1.2

This comparison is only intended to show experimental verification of the
predicted variation of q with L/D.

An absolute comparison of predicted with measured values of q can
be obtained from ZPR-III Assembly 25. The experimental core with
L/D ~ 0.9 gave g = 0.13, whereas interpolation of data in Table III gives
q =0.11 for Reactor No. 1. This difference of ~20% between theory and
experiment is expected. The use of the three-group constants (Table II)
tends to overpredict the critical mass by about 20%. The error in the cal-
culated multiplication constant is about 2% Ak/k.

V. POWER DISTRIBUTION AS A FUNCTION OF CORE GEOMETRY

The four reactor analyses also yield information on the power distri-
bution as a function of core geometry. In particular, the various maximum-
to-average power densities may be obtained from the calculations. Such
ratios are given in Table V. For the most part, it is seen that they are only
slowly varying functions of changes in L/D. The more significant and
interesting of these are the ratios of maximum power density to average
radial power density, which are also shown on Figs. 4 and 5. It should be
noted that the largest value of this ratio is predicted for small values of

L/D. Also, the variation of this quantity as a function of L/D is much more
pronounced than for the other power parameters in Table V.



Table V

VARIATION OF POWER PRODUCTION WITH
CYLINDRICAL CORE GEOMETRY (L/D)

* *%
Reactor Pmax Prmax PreflJr
No 76 R Progial ave Cony
. BN o radial ave /. gpe core
0.36 a1 1.78 0.0529
0.54 2e18 171 0.0448
0.72 2.18 1.67 0.0446
1 0.78 2.19 1.66 0.0425
1.00 2.17 1.62 0.0439
1.35 2.18 1.59 0.0439
2.02 2223 1.57 0.0440
0.20 2.09 1,75 0.0519
0.37 2.00 1.66 0.0500
0.56 11Cir/ 1.60 0.0461
2 0.74 1.96 1.56 0.0450
0.87 1.95 1.54 0.0440
0.93 1.96 1.52 0.0444
1LoG) 1.98 1.49 0.0444
2.10 28012 1.46 0.0448
0.30 1.72 LBl 0.147
0.45 1.65 1.44 0.149
0.59 1.62 1.40 0.146
e 0. 79 1.61 1.36 0.147
1.18 1.62 1.34 0.146
1.47 1.64 1.31 0.144
0.54 217 1.70 0.0276
0.72 2.16 1.67 0.0267
4 0.78 21T 1.64 0.0256
1.00 2.16 1.61 0.0263
1L, 25 2.19 1.58 0.0268

*Phax = Maximum Power Density (at center of core)

PA T / P(r,z) dV f av
core core
R f P (r,o) rdr// rdr
core core
tp = / P (r,z) dV
core 4
core

Prefl = f P (r,z) aV
reflector
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The power data for Reactor No. 1 were compared with axial fission
distributions* measured with ZPR-III Assembly 25. These results are
shown on Figs. 6 and 7. The experimental results were normalized to the
predicted data at the center of the core. The comparison between theory
and experiment is good enough to support the predictions in Table Wi
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VI. INTERPRETATION OF THE ANALYTICAL RESULTS

The net neutron leakage from the core is an important contributor
to the Shape Factor determination. It is reasonable, therefore, to expect
that the Shape Factor be strongly dependent upon the ratio of the spherical
core surface area to the cylindrical core surface area.* The results
from Table IV were reinterpreted on such a basis and are shown on Fig. 8.
The Shape Factor is given as a function of SS/SC, where Sg and Sc are the
appropriate spherical and cylindrical core surface areas, respectively.
Figure 9 gives similar results for the experimentally investigated moder-
ately sized cores.(1)
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SHAPE FACTOR AS A FUNCTION OF CORE SURFACE AREA
(ANALYTICAL RESULTS)

* Table V shows that the ratio of maximum to average power density
as a function of core geometry does not vary by more than 7.5%.
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Figures 8 and 9 show that, to a high degree of approximation, the
Shape Factor is a linear function of the ratio of core surface areas.*
Furthermore, all of the systems appear to have the same:linear dependence.
The major difference between the various systems is the location of the
"optimum geometry" Shape Factor.

It is of considerable interest to determine to what extent rather

simple results may be used for future analyses. The simple criticality
equation

2 T >Z_<2.405>2+< m >2
s=lEe) \Rre L+zh : (5)

where S, R, and L are the calculated spherical radius, cylindrical radius
and core height, respectively,®™ and s, § and A are the spherical, radial
cylindrical and axial cylindrical "reflector savings,"

respectively, was

* Comparing core surface to volume ratios of cylindrical with spherical
systems does not yield such a simple dependence.

** Spherical results from Table III; cylindrical results from Table IV.



applied to the results of the detailed analytical results. The criticality
condition requires that the material buckling K be equated to the geometric
buckling. The material buckling is obtained from a diffusion theory funda-
mental mode calculation. The "reflector saving" as used here is the actual
reflector saving plus extrapolation distance.

Table VI summarizes the reflector saving determinations for the
spherical systems along with the calculated material bucklings.

Table VI

MATERIAL BUCKLINGS AND SPHERICAL
CORE REFLECTOR SAVINGS

&* SElcE St g
e (cm=?) el ) e
1 0.002515 62.64 Gl a5 101855
2 0.001613 78822 58.77 19.5
3 0.002013 70.02 44 .81 2512
4 0.002515 62.64 50.64 12.0

* Calculated material buckling
**S +s = 7/k
*** From Table III
fReflector Saving plus Extrapolation Distance
Table VII summarizes the reflector saving determinations for the

cylindrical systems. These were obtained by assuming that the axial and
radial reflector savings are equal. Equation (5) was reordered as follows:

[(R+op- #][@rzap-e]-ve | (6)
where

v =(2.405)/k
and

e=m/k

By assuming 8 = A, the resulting fourth-order equation was solved
for the single real and positive root. Table VII summarizes these
calculations.



22

Table VII

REFLECTOR SAVING ! DETERMINATIONS FOR CYLINDRICAL CORES

(Axial and radial reflector savings are assumed equal)

2 Approx.
D i M = ARCHo S *okk *ok ok
Reactor L/D femst) (o) (cmm) (cm) A ETT?LVZ)
0.30 158.94 12.8 13.9 “‘,4\/
0.49 120.78 1252 13.4 '
1 0.78 97.68 RIS 12.3 180 14.7 +3.0
0.97 90.56 12.4 13,7
168572 82.96 2T 13.8
0527 199.98 18.4 20.4
0.36 165.56 18.7 21.4
0.76 115.64 18.8 221
2 0.87 109.98 19.5 18.9 22.1 21T 3202
0.96 106.98 LN 207
1.44 95.82 19.0 2105
2516 89.18 19.1 20.7
0.32 132.60 ) 2256 30.3
0.45 110.74 23.1 32.9
0.59 97.62 23.4 34.5
- 0.78 87.18 = 23.8 35.0 ol =
1.17 76.66 23.9 32.9
1.48 72.68 25.4 30.8
0.50 119.02 1273 13.6
0.68 102.84 1255 1329
4 0.78 97.62 12.0 12.4 13.7 15.6 +1.0
0.96 91.04 1258 13.6
132 83.28 1775 13.6

*Exact solution of Equation (7).
**Neglect cubic and quartic terms in Equation (7).
***Evaluation of:

f
Zre

1 2 t
5zAz?tan‘ — = & Lyef

Z core

tr

*¥***Error incurred by using spherical reflector saving in cylindrical
calculation with optimum L/D.
A-s
D

Error = E = 3

tReflector saving includes extrapolation length.

HSpherical reflector saving from Table VI.




Table VII also gives the results of neglecting the coefficients of the cubic
and quartic terms for A in Equation (6). This approximation becomes better
as the ratio of core dimension to reflector saving increases. This is simply
because expansion of Equation (6) gives the following:

4 3 L 22 1L IL\2 1
A +2ADlil+—f)-}+AD ) B = -52(q+Q)

LZ
b L e iL 1,\2 q(g) Hi©
+2AD% | =+ =) - = [q = - algle=ma i vl e [
B S e e B T
(7)
where
5 =A
2
q:4<2.405)
K
Q = (71 /k )?

D = 2R = core diameter;
L = core height.

It may be seen on Table VII that the easily obtained spherical re-
flector saving from Table VI may not be used for high-precision cylindrical
calculations. The spherical reflector saving is less than the exact cylindri-
cal value for the high-density cores (Reactors 1 and 4) and is greater than
the exact cylindrical value for the low-density cores (Reactors 2 and 3).

The reflector savings for an infinite slab reactor with reflector
(Formula 3.212.2 of Ref. 19) is given by

zref
1 s
6= tan™!4 ————— k Lyesf 5 (8)
core

2o

where

core ref
and Z are spectrum-averaged transport cross sections for
tr tr

23
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Table VIII

REFLECTOR SAVING DETERMINATIONS BY CORRELATING

ONE- AND TWO-DIMENSIONAL ANALYSES

2 =
Reactor L/D R* Ik% (xblioiz) (ETOTJB) bi]EP:Z l?c;é)’T L (2;2-,1&)” (65::; A(:r;;
No. (cm) (Cm) (cm'z) (cm'z) Ecm_z))
1 :30 79.47 47.68 | 0.5488 1.7969 2.3457 102.66 74.07 23,2 13,2
.49 60.39 59.18 | 1.0472 1.3856 2.4328 74.32 84.36 13.9 12:6
.68 Calgrdo) 70.31 | 1.3698 | 1.0609 | 2.4307 64.98 96.40 1LEHE) 13.0
o) 48.85 76.20 | 1.4996 | 0.9356 2.4352 62.10 102.65 S 132
<90 45.28 87.84 | 1.6971 0.7229 2.4200 58.38 116.78 1371 14.6
1.32 41.72 | 110.14 | 1.9399 | 0.4807 2.4206 54.61 143.22 1259 IG5
1.97 38.96 | 153.50 | 2.1761 0.2615 2.4376 51.56 194.18 12.6‘ ZO.}
F.M.2 2,515 7 ". "
& CTATE 99:99 53199 °0.3995 1.2018 1.6013 12033 90.57 20.3 183
.36 82.79 59.61 | 0.5403 | 1.0514 LG s 103.47 96.84 207 18.6
-5 65,22 74.35| 0.8095 | 0.7908 1.6002 84.53 111.66 11983 18.7
.76 57.82 87.89 | 0.9756 | 0.6317 1.6073 76.99 124.94 19.2 18.5
B! 55.00 95.70 | 1.0447 | 0.5605 1.6052 74.41 132.63 19.4 18.5
.96 53.49 | 102.70 | 1.1094 | 0.5136 1.6230 72321 138.56 18.7 IN72O
1.44 47.92 | 138.01 | 1.2860 | 0.3204 1.6065 67.06 175.41 UGl 18.7
216 44.59 [ 192.63 | 1.4252 | 0.1850 1.6102 63.70 230.89 el 19.1
F.M2 172613 q </
3 22 66.30 4045 07318 [N 13432 2.0750 88.91 85.68 22.6 21.6
.45 55537 49.83 | 0.9409 | 1.1314 2.0723 78.41 93.35 2300 21.8
59! 48.81 57.60 [ 1.1094 | 0.9725 2.0819 it 100.69 23.4 21.5
.78 43.59 68.00 | 1.2831 07955, 2.0765 67.14 111.47 23.6 2157
1107 BRES3 89.69 | 1.5000 | 0.5616 2.0616 62.10 132.50 23.8 21.4
1.48 36.10 | 106.85 | 1.6126 | 0.4406 2.0532 59.89 149.60 23.8 2l.4
F.M.2 2.013 T
4 .50 58:51 59.51 1.0718 | 1.3521 2.4239 73.46 85.39 14.0 12.9
.68 51.42 69.93 | 1.3663 | 1.0482 2.4145 65.06 96.99 13.6 11355,
.78 48.82 76.16 | 1.4996 | 0.9212 2.4209 62.10 103.45 11353 13.6
.96 45.52 87.40 [ 1.7011 | 0.7462 2.4473 58.31 114.95 12.8 1'3.7
12 41.64 | 109.93 | 1.9459 | 0.4823 2.4283 54.52 142.97 12.9 165
F.M.2 2.515

*Used in radially reflected axially bare cylindrical calculation.

**Used in axially reflected radially bare slab calculation.

***Radial reflector saving plus extrapolation length.

TObtained from axially reflected radially bare slab calculation.

1 Obtained from radially reflected axially bare cylindrical calculation.

t11 Axial reflector saving plus extrapolation length.

2F.M. = Fundamental Mode Analysis (From Table VI)
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core and reflector, respectively, and L,.f is the spectrum-averaged re-
flector diffusion length.

The results of evaluating Equation (8) for the four reactor systems
are also shown in Table VII. The core spectrum from the fundamental mode
calculations was used to average both core and reflector constants. The
core leakage spectrum into the blanket is more like the core spectrum than
the asymptotic blanket spectrum. Therefore, a spectrum harder than the
asymptotic blanket spectrum will be significant toward the reflector saving
determination. It may be seen from Table VII that the evaluation of Equa-
tion (8) consistently overpredicts the reflector saving.

It is of interest to see what error is introduced through the use of the
spherical reflector saving in a cylindrical calculation. This error is pre-
dicted for near optimum geometry systems. The error is approximately
given by

A-s
D

Error in core size* = E =3

" The last column in Table VII shows the result of these calculations.

One-dimensional calculations were used to determine the variation
of both axial and radial reflector saving with core geometry. Core radii and
diameters were specified from the calculated two-dimensional critical sys-
tems cited in Tables IV and VII. Then a series of radially reflected cylindri-
cal calculations were brought critical by varying the axial buckling. Similarly,
a series of axially reflected slab calculations were brought critical by varying
the radial buckling. The bare core radii and heights extracted from the trans-
verse bucklings then yielded the reflector savings (plus extrapolation distance).
This was accomplished by suhtracting the reflected core radii and heights,
respectively, obtained from the two-dimensional calculations. Table VIII
summarizes the results of this approach.

It is significant to note that the sum ol b; = k2, although relatively
constant as a function of L/D, does not agree with the results of the funda-
mental mode analysis (Table VI)¥* Values of k% from the latter are 2.515,
1.613, 2.013, and 2.515 x 10”3 for Reactors 1, 2, 3, and 4, respectively. The
difference between the values of k2 in Table VIII and those from Table VI
are indicative of the limitations of purely one-dimensional calculations
coupled with fundamental mode analyses.

*1,/D =1.

** These are also shown on Table VIII.



The extracted reflector savings § and A in Table VIII show a signifi-
cant variation as a function of L/D. In general, axial and radial reflector
savings are not equal. Occasional small deviations from smooth variat'ion
as a function of L/D occur. These must be attributed to the differenceAm
convergence criteria between the various analyses used in the calculation.
In general, the one-dimensional calculations converged better than the two-
dimensional analyses. The one-dimensional method shows gross errors
only for systems near the extremities of the analyses; those having either
very high or very low ratios of core height to diameter. This is caused by
the spectral influence of the reflector.

VII. CONCLUSIONS

This study extends existing experimental Shape Factor data by
analysis of four conceptual systems. The major practical implications of
the analysis are:

1. Shape Factors are more dependent upon core than reflector
composition.

2. The Shape Factors for optimum geometry (L/D ~0.9) increase
with core density.

3. The reactivity worth of fuel at the core boundary tends to in-
crease with L/D.

4. The ratio of maximum power density to average radial power
density tends to be inversely proportional to In(L/D).

If the increased fuel inventory of nonoptimum core geometry can be
tolerated, there may be some definite improvement in several aspects of
reactor performance. For example, reactor control may be affected by
movement of fuel (or other materials) at or near the core boundary. The
q values determined suggest that the reactivity held by a given amount of
fuel increases almost linearly with ln(L/D). Therefore, a given amount of
reactivity (for burnup or shutdown) may be more easily provided in non-
optimum core geometry with L/D Sl

The predicted positive sodium void coefficient(15) may be effectively
reduced or brought negative in nonoptimum geometry. This study shows that,
under proper conditions, other advantageous control and engineering features
may accompany the nonoptimum geometry core design.

The study also shows that some care must be taken in assigning

Shape Factors for precision comparison between spherical calculations and
cylindrical experiment.
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It is recognized that two-dimensional analyses are required to re-
solve specific problems. The determination of the optimum geometry Shape
Factor for a specific system is an example requiring two-dimensional
analysis. However, the more approximate one-dimensional method should not
be underestimated. In general, these do show the significant trends and only
small errors are incurred by their use.

The approximately linear dependence between the Shape Factor and
the ratio of spherical to cylindrical core surface area is demonstrated.
This approximation may be confidently used to determine trends.
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